The Crystal Chemistry of Zirconium Sulphates.

IV. The Structure of the γ-Monohydrate, $\mathrm{Zr}\left(\mathrm{SO}_{4}^{-}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, a Layer Compound with the Zirconium Atom in Sevenfold Coordination

By I.J. Bear and W. G. Mumme
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 17 February 1969 and in revised form 5 May 1969)
$\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ is triclinic, space group $P \overline{1}$, with unit-cell dimensions $a=7.89, b=5 \cdot 21, c=8.96 \AA$, $\alpha=95 \cdot 2^{\circ} . \beta=99 \cdot 8^{\circ}, \gamma=109 \cdot 2^{\circ}$. The structure, determined by single-crystal X-ray analysis, consists of layers of composition $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$, probably held together by hydrogen bonding. Each zirconium atom is bonded to six oxygen atoms of bridging sulphate tetrahedra, while the hydrate oxygen atom forms a seventh ligand. The coordination of the zirconium atom is sevenfold and is similar to that found in baddeleyite, ZrO_{2}.

Introduction

Parts I-III of this series of papers (Bear \& Mumme, 1969a, b, c) described the structural and chemical relationships between the four higher hydrates:
$\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}, \alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}, \beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. In all of these compounds hydrogen bonding plays an important role. The heptaand the two pentahydrates are all built up from isolated dimeric groups of composition $\mathrm{Zr}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ which

Table 1. X-ray powder diffraction data for $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

$d_{\text {obs }}$	$\sin ^{2} \theta_{\text {obs }}$	$\sin ^{2} \theta_{\text {calc }}$	hkl	I	$d_{\text {obs }}$	$\sin ^{2} \theta_{\text {obs }}$	$\sin ^{2} \theta_{\text {calc }}$	hkl	1
8.70	0.0078	0.0078	001	w	$2 \cdot 485$	0.0961	0.0961	$1 \overline{3}$	w
$7 \cdot 29$	0.0112	$0 \cdot 0112$	100	vs			0.0959	112	
$6 \cdot 28$	0.0150	$0 \cdot 0150$	101	m					
4.90	0.0247	0.0251	010	w	2.424	$0 \cdot 1010$	0.1007	$12 \overline{1}$	w
		0.0245	$1 \overline{10} 0$				0.1007	300	
$4 \cdot 37$	0.0311	0.0312	002	w	$2 \cdot 355$	$0 \cdot 1070$	0. 1069	221	w
$4 \cdot 32$	0.0318	0.0319	$1 \mathrm{T1}$	m			0•1068	312	
$4 \cdot 24$	0.0332	0.0329	$1 \overline{1}$	w					
$4 \cdot 151$	0.0344	0.0345	$10 \overline{2}$	m	$2 \cdot 342$	$0 \cdot 1081$	0.1085	013	w
3.985	0.0374	0.0373	011	s			$0 \cdot 1081$	$30 \overline{2}$	
$3 \cdot 644$	$0 \cdot 0447$	0.0447	200	m	$2 \cdot 219$	0.1205	$0 \cdot 1202$	104	vw
		$0 \cdot 0446$	201				$0 \cdot 1203$	301	
3.576	0.0464	0.0464	210	w	2.096	0.1350	$0 \cdot 1350$	120	\boldsymbol{w}
$3 \cdot 512$	0.0481	0.0480	110	w			0.1354	$32 \overline{1}$	
		0.0507	211				0.1353	$30 \overline{3}$	
$3 \cdot 418$	0.0508	0.0503	102	vw	2.072	$0 \cdot 1381$	0.1379	204	w
							0.1384	313	
3.290	0.0548	0.0549	1 T 2	m	2.048	$0 \cdot 1415$	$0 \cdot 1415$	321	vw
3.214	0.0574	0.0577	$2 \overline{1}$	w	1.967	$0 \cdot 1533$	0.1535	$4 \overline{11}$	w
$3 \cdot 137$	0.0603	0.0601	202	m	1.942	$0 \cdot 1573$	$0 \cdot 1571$	214	w
		0.0606	201				0.1571	410	
3.084	0.0624	0.0625	112	$w-m$	1.822	$0 \cdot 1787$	0.1785	$40 \overline{2}$	m
3.025	0.0648	0.0651	012	m			0.1790	400	
2.925	0.0693	0.0695	$10 \overline{3}$	$w-m$					
$2 \cdot 910$	0.0701	0.0702	003	w	1.789	$0 \cdot 1853$	0.1853	214	w
		0.0705	212				$0 \cdot 1855$	314	
							$0 \cdot 1850$	311	
2.686	0.0823	0.0821	$01 \overline{3}$	${ }^{\boldsymbol{w}}$			$0 \cdot 1855$	420	
$2 \cdot 650$	0.0845	0.0846	212	w					
2.594	$0 \cdot 0882$	0.0881	120	$w-m$	1.753	$0 \cdot 1930$	$0 \cdot 1931$	$4 \overline{13}$	$\boldsymbol{w}-\boldsymbol{m}$
$2 \cdot 554$	0.0910	0.0911	121	$w-m$	1.721	$0 \cdot 2003$	$0 \cdot 2004$	131	w
		0.0912	$20 \overline{3}$				$0 \cdot 2002$	$2 \overline{3} 0$	
		0.0909	311				$0 \cdot 2002$	205	
		0.0906	310				$0 \cdot 2004$	213	
							$0 \cdot 2003$	$4 \overline{1} 1$	
$2 \cdot 522$	0.0933	0.0935	113	w	1.713	0.2022	$0 \cdot 2018$	130	w
		0.0933	103				$0 \cdot 2026$	$4 \overline{22}$	
		0.0932	113				$0 \cdot 2017$	403	
		0.0933	210				$0 \cdot 2026$	401	

in all three cases are held together in several directions by hydrogen bonds through the coordinated and nonbonded water molecules. The tetrahydrate is composed of infinite layers of composition $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ held together by hydrogen bonding through the coordinated water molecules.

Parts IV and V of the series deal with three monohydrates of zirconium sulphate. In contrast to the higher hydrates which are all essentially hydration products either of a lower hydrate or of one of the three anhydrous zirconium sulphates (Bear \& Mumme, 1968), γ - and $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ have only been obtained by thermal decomposition of the higher hydrates (Bear \& Mumme, 1969d). Both phases are metastable and equilibrate to $\alpha-\mathrm{Z4}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ under suitable conditions. The stable α-phase can be prepared either as a decomposition product or by vapour hydration of the anhydrous sulphates at $120^{\circ} \mathrm{C}$ (Bear \& Mumme, 1969d).

This paper describes the structure of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$. Part V (Bear \& Mumme, 1970) which follows, reports that of $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and presents unit-cell parameters and powder data for $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. It also includes a discussion of the structural inter-relationships between the three monohydrates and the higher hydrates.

Experimental

$\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared as a microcrystalline powder by thermal decomposition of solid $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ at $200^{\circ} \mathrm{C}$ for one hour. The compound is extremely hygroscopic under ambient conditions.

Powder diffractometer data were collected from this material using a Philips proportional-counter diffractometer with a Ni filter and $\mathrm{Cu} K \alpha_{1,2}$ radiation. A continuous stream of dry N_{2} gas was passed over the sample to delay rehydration.

Well-formed crystals of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ suitable for structural analysis can be prepared either by evaporation of an aqueous solution of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ or by the thermal decomposition of solid $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ as a slurry in 10 molar sulphuric acid at $120-140^{\circ} \mathrm{C}$. The crystals were long blade-like needles up to a millimetre in length, but unfortunately many of these were twinned. As with the microcrystalline material these

Table 2. Crystal data for $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Symmetry	Triclinic
Unit-cell dimensions	$a=7 \cdot 89 \pm 0 \cdot 01 \AA$
	$b=5 \cdot 21 \pm 0 \cdot 01$
	$c=8 \cdot 96 \pm 0 \cdot 01$
	$\alpha=95 \cdot 2 \pm 0 \cdot 1^{\circ}$
	$\beta=99 \cdot 8 \pm 0 \cdot 1$
	$\gamma=109 \cdot 2 \pm 0 \cdot 1$
	$P 1$ or $P \overline{\mathrm{I}}$
Possible space groups	$2 \cdot 95 \mathrm{~g} . \mathrm{cm}^{-3}$
D_{x}	$2 \cdot 93 \pm 0 \cdot 03{\mathrm{~g} . \mathrm{cm}^{-3}}^{D_{m}}$
Z	$200 \mathrm{~cm}^{-1}$

crystals were extremely hygroscopic, so that it was necessary to seal the crystal used for collection of X-ray data in a quartz capillary. This procedure was carried out inside a glove box purged with dry N_{2} gas.

Weissenberg data collected around the needle axis, b, gave values of a^{*}, b, c^{*} and β^{*}. Although upper level data indicated that the crystals were triclinic, it was not possible to confirm this by indexing the powder diffractometer data, from the approximate lattice parameters obtained by the vector shift method. Considerable time had been spent in obtaining an untwinned crystal, so that the data about other axes necessary for indexing the powder data were sought by the precession method, rather than by attempting to

Fig. 1. Patterson function $P(u, w)$ projected on to (010). The cross is the $\mathrm{Zr}-\mathrm{Zr}$ vector across the origin.

Fig.2. Electron density distribution indicated by sections $\varrho_{0}(x, y, z)$ selected near the atom centres and projected on to (010). The contours are at arbitrary intervals.
remount the crystal, already aligned, about either a or c. A zero-level precession film was obtained which contained [$\overline{1} 10$] and [201] as the axes, and with the additional reciprocal lattice dimensions obtained from it, the powder data (Table 1) were indexed, reduced, and refined to give the lattice parameters of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ given in Table 2.

Integrated Weissenberg data $h 0 l$ to $h 3 l$ were recorded about the needle axis, using $\mathrm{Cu} K \alpha_{1,2}$ radiation and multiple-film packs, from a crystal measuring $0.2 \times 0.2 \times 0.5 \mathrm{~mm}$. Measurement of intensities, subsequent data handling, including interlayer scaling procedures, and the scattering curves for Zr, S, and O are as described in part I (Bear \& Mumme, 1969a).

Table 3. Observed and calculated structure factors

Structure determination

The number of formula units $Z=2$ was calculated from the density, $2.93 \mathrm{~g} . \mathrm{cm}^{-3}$, obtained by displacement in CCl_{4}. The space group was assumed to be $P \overline{1}$ rather than the alternative $P 1$, and this was later confirmed by the satisfactory refinement of the structure.

With the b axis dimension only $5.21 \AA$ it was expected that most atoms should be resolved in projection, so initially the structure determination by Fourier methods was confined to the $h 0 l$ level alone.

The Patterson projection $P(u, w)$ shown in Fig. 1 contained many well resolved peaks, but one of the smallest at ($0.25,0.54$) eventually proved to be the $\mathrm{Zr}-\mathrm{Zr}$ interaction across the origin. Using the signs of the structure factors calculated for these zirconium atom positions it was possible to determine the approximate parameters for $S(1)(0.85,0.10)$ and $S(2)(0.75$, $0 \cdot 47$) from a Fourier synthesis. In subsequent Fourier syntheses, five peaks corresponding to oxygen atoms became well resolved at $(0.4,0.25),(0.16,0.06)$, ($0.67,0.12$), $(0.60,0.35)$ and $(0.93,0.42)$ together with two broader less well resolved peaks at ($0 \cdot 19,0 \cdot 24$) and ($0.93,0.17$). It soon became clear that in this (010) projection both sulphate tetrahedra were being viewed almost down one of their edges, so that the two broader peaks in each case corresponded to two oxygen atoms almost overlapping. Thus the zirconium atom was probably in sevenfold coordination and if it were assumed that the six ligands to the six attached sulphate groups closest to each zirconium atom were oxygen atoms, the one further ligand was an oxygen atom of a water molecule, and the overall composition became $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, confirming the chemical analysis.

At this point a three-dimensional Patterson function $P(u, v, w)$ was calculated from which the parameters of $\mathrm{Zr}, \mathrm{S}(1)$ and $\mathrm{S}(2)$, were determined. These were confirmed by a three-dimensional Fourier analysis shown in Fig.2.

Refinement of the structure was continued with a number of least-squares cycles using isotropic temper-
ature factors for each atom, until R dropped to $12 \cdot 6 \%$, for the 708 observed reflexions. The weighting scheme of Cruickshank, Pilling, Bujosa, Lovell \& Truter (1961) was used and the matrix inversion involved the blockdiagonal approximation. The scaled observed data, and structure amplitudes calculated from the final model are given in Table 3. Atomic parameters and individual isotropic temperature factors are listed in Table 4 (Fig.3) and bond lengths in Table 5.

Fig.3. The structure of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ projected on to (010). Large open circles, zirconium atoms; full black circles, sulphur atoms; medium open circles, oxygen atoms; stippled circles, water molecules.

Table 4. Fractional atomic parameters and thermal parameters for $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$
Estimated standard deviations are given in parentheses.

	\boldsymbol{x}	y	z	B
Zr	$0 \cdot 1200$ (3)	$0 \cdot 3025$ (6)	$0 \cdot 2719$ (2)	0.60 (4) \AA^{2}
S(1)	$0 \cdot 8424$ (8)	$0 \cdot 6368$ (19)	$0 \cdot 1025$ (7)	$0 \cdot 74$ (12)
S(2)	0.7586 (7)	$0 \cdot 0971$ (18)	$0 \cdot 4726$ (7)	0.44 (11)
$\mathrm{O}(W 1)$	$0 \cdot 3951$ (27)	$0 \cdot 3325$ (57)	$0 \cdot 2402$ (27)	$3 \cdot 21$ (49)
$\mathrm{O}(2)$	$0 \cdot 6714$ (26)	$0 \cdot 6534$ (55)	$0 \cdot 1230$ (26)	$2 \cdot 95$ (47)
$\mathrm{O}(3)$	$0 \cdot 6004$ (23)	$0 \cdot 0475$ (49)	$0 \cdot 3527$ (23)	1.97 (39)
$\mathrm{O}(4)$	0.9335 (22)	$0 \cdot 1850$ (48)	0.4191 (22)	1.85 (39)
O(5)	$0 \cdot 2554$ (21)	$0 \cdot 1462$ (45)	0.4559 (20)	1.52 (36)
O(6)	$0 \cdot 2314$ (24)	0.6851 (50)	0.4070 (23)	$2 \cdot 19$ (40)
O(7)	$0 \cdot 1593$ (22)	0.4452 (49)	$0 \cdot 0588$ (22)	$1 \cdot 85$ (38)
$\mathrm{O}(8)$	$0 \cdot 8848$ (22)	0.4192 (49)	$0 \cdot 1886$ (23)	$1 \cdot 83$ (39)
$\mathrm{O}(9)$	-0.0072 (25)	$-0 \cdot 1058$ (53)	$0 \cdot 1530$ (24)	$2 \cdot 58$ (44)

Description and discussion of structure

The structure of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ viewed in (010) projection is shown in Fig. 3. It is made up of layers of composition $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ which extend infinitely along [001]. One such layer centred at $x=0$ is shown in Fig. 4.

Each zirconium atom is in sevenfold coordination. Each has six ligands being the oxygen atoms of six attached sulphate tetrahedra, and the seventh being the oxygen atom of the hydrate group. Sulphate groups bridge between the zirconium polyhedra in such a way that each zirconium atom is in contact with six sulphate groups, and each sulphate group is in contact with three zirconium atoms. This provides for the
double bridging of sulphate groups between zirconium atoms and for the building up of each layer both along [010] and [001]. Hydrogen bonding may be assumed to be between the coordinated water molecules and the free ligands of the sulphate groups and presumably serves to hold the layers together.

Sevenfold coordination for zirconium has previously been found in a variety of compounds such as ZrO_{2} (monoclinic form), ZrOS (McCullough, Brewer \& Bromley, 1948) and $\mathrm{Na}_{5} \mathrm{Zr}_{2} \mathrm{~F}_{13}$ (Herak, Malcic \& Manojlovic, 1965). The range of metal-oxygen bonds in $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Table 5 and Fig. 3) is between 2.07 and $2.19 \AA$, which differs only slightly from the range of 2.04 to $2.26 \AA$ found in ZrO_{2} (monoclinic).

Fig.4. The layer centred at $x=0$ as viewed along the a axis. Designation of the atoms is the same as in Fig. 3 .

Fig.5. The representation of sevenfold coordination of zirconium, (1) as a trigonal base-tetragonal base combination; (2) as a capped trigonal prism; (3) as a capped octahedron.

McCullough \& Trueblood (1959) visualize the coordination polyhedron in ZrO_{2} as being derived from a cube. Four oxygen atoms are at the base, and one at one of the upper corners and the remaining two are at the mid points of the cube edges connecting the unoccupied corners, which is a distortion of the ideal tetragonal base - trigonal base form. Earlier McCullough et al. (1948) likened the coordination of the zirconium atom in ZrOS to a capped octahedron. The similarity of these two forms of coordination with the capped trigonal prism, another idealized form of sevenfold coordination (the fourth being the pentagonal-bipyramid) has been pointed out by Mumme \& Wadsley (1968) (Fig.5) in a discussion of the sevenfold coordination polyhedron as a structure building block in oxide systems.

While mean bond lengths and angles for the sulphate groups are close to those expected for the ideal tetrahedron the variation of 1.39 to $1.52 \AA$ for the tetrahedron around $\mathrm{S}(1)$ represents a considerable distortion. The second group is also distorted but the varia-

Table 5. Interatomic distances and angles, and their e.s.d.'s
(a) Within the ZrO_{7} polyhedron

Metal-oxygen distances	
$\mathrm{Zr}-\mathrm{O}(W 1)$	$2 \cdot 19 \pm 0.03 \AA$
O(7)	2.15 ± 0.02
$\mathrm{O}(9)$	$2 \cdot 12 \pm 0.02$
$\mathrm{O}(8)$	2.17 ± 0.02
$\mathrm{O}(4)$	$2 \cdot 12 \pm 0.02$
$\mathrm{O}(5)$	2.18 ± 0.02
O(6)	2.07 ± 0.02
Average	2.14
$\begin{aligned} & \text { Oxygen-oxygen } \\ & \text { distances } \end{aligned}$	
$\mathrm{O}(5)-\mathrm{O}(6)$	$2.94 \pm 0.03 \AA$
$\mathrm{O}(6)-\mathrm{O}(8)$	2.91 ± 0.03
$\mathrm{O}(8)-\mathrm{O}(9)$	3.12 ± 0.03
$\mathrm{O}(5)-\mathrm{O}(9)$	$3 \cdot 02 \pm 0.03$
$\mathrm{O}(W 1)-\mathrm{O}(7)$	2.51 ± 0.03
$\mathrm{O}(7)-\mathrm{O}(8)$	2.59 ± 0.03
$\mathrm{O}(7)-\mathrm{O}(9)$	3.01 ± 0.03
$\mathrm{O}(W 1)-\mathrm{O}(6)$	2.99 ± 0.03
$\mathrm{O}(W 1)-\mathrm{O}(5)$	$2 \cdot 50 \pm 0.03$
$\mathrm{O}(4)-\mathrm{O}(8)$	2.53 ± 0.03
$\mathrm{O}(4)-\mathrm{O}(9)$	2.90 ± 0.03
$\mathrm{O}(4)-\mathrm{O}(6)$	2.91 ± 0.03
$\mathrm{O}(4)-\mathrm{O}(5)$	2.58 ± 0.03
Angles	
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(8)$	$72 \pm 1^{\circ}$
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(9)$	86 ± 1
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}$ (6)	88 ± 1
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(5)$	74 ± 1
$\mathrm{O}(9)-\mathrm{Zr}-\mathrm{O}(8)$	93 ± 1
$\mathrm{O}(9)-\mathrm{Zr}-\mathrm{O}(5)$	89 ± 1
$\mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}$ (6)	88 ± 1
$\mathrm{O}(6)-\mathrm{Zr}-\mathrm{O}(8)$	87 ± 1
$\mathrm{O}(7)-\mathrm{Zr}-\mathrm{O}(9)$	90 ± 1
$\mathrm{O}(7)-\mathrm{Zr}-\mathrm{O}(8)$	74 ± 1
$\mathrm{O}(W 1)-\mathrm{Zr}-\mathrm{O}(6)$	89 ± 1
$\mathrm{O}(W 1)-\mathrm{Zr}-\mathrm{O}(5)$	70 ± 1
$\mathrm{O}(W 1)-\mathrm{Zr}-\mathrm{O}(7)$	71 ± 1

Table 5 (cont.)
(b) Within the sulphate groups

$\mathrm{S}(1)-\mathrm{O}(8)$	$1.52 \pm 0.02 \AA$
$\mathrm{O}(2)$	1.42 ± 0.03
$\mathrm{O}(9)$	1.39 ± 0.02
$\mathrm{O}(7)$	1.49 ± 0.02
Average	1.46
$\mathrm{~S}(2)-\mathrm{O}(3)$	$1.44 \pm 0.02 \AA$
$\mathrm{O}(4)$	1.48 ± 0.02
$\mathrm{O}(5)$	1.46 ± 0.02
$\mathrm{O}(6)$	1.47 ± 0.02
Average	1.46

$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(9)$	$108 \pm 1^{\circ}$
$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(2)$	113 ± 1
$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(8)$	103 ± 1
$\mathrm{O}(9)-\mathrm{S}(1)-\mathrm{O}(8)$	106 ± 1
$\mathrm{O}(9)-\mathrm{S}(1)-\mathrm{O}(2)$	116 ± 1
$\mathrm{O}(8)-\mathrm{S}(1)-\mathrm{O}(2)$	110 ± 1
Average	109
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(3)$	$113 \pm 1^{\circ}$
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(5)$	109 ± 1
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(6)$	107 ± 1
$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(5)$	106 ± 1
$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{O}(3)$	110 ± 1
$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(3)$	111 ± 1
Average	109

(c) Possible hydrogen bonding between the water molecule and its neighbours

Distances	
$\mathrm{O}(W 1)-\mathrm{O}(2)$	$2.71 \pm 0.04 \AA$
$\mathrm{O}(3)$	2.67 ± 0.03
$\mathrm{O}(5)$	2.50 ± 0.03
$\mathrm{O}(6)$	2.99 ± 0.03
$\mathrm{O}(7)$	2.51 ± 0.03

$\mathrm{O}(3)-\mathrm{O}(W 1)-\mathrm{O}(6)$	$129 \pm 1^{\circ}$
$\mathrm{O}(5)$	76 ± 1
$\mathrm{O}(2)$	92 ± 1
$\mathrm{O}(7)$	159 ± 1
$\mathrm{O}(2)-\mathrm{O}(W 1)-\mathrm{O}(3)$	92 ± 1
$\mathrm{O}(7)$	91 ± 1
$\mathrm{O}(6)$	110 ± 1
$\mathrm{O}(5)$	153 ± 1

tion of 1.44 to $1.48 \AA$ is much less. Again the variation of angle for the first tetrahedron of 106 to 116° is more extreme than that of the second where it is 106 to 113°.
Table 5(c) gives the distance between $\mathrm{O}(W 1)$ and possible acceptor oxygen atoms for hydrogen bonds. The $\mathrm{O}-\mathrm{O}(W 1)-\mathrm{O}$ angles are also included. It seems likely that hydrogen bridging occurs between $\mathrm{O}(W 1)$ and $\mathrm{O}(2)$ and $\mathrm{O}(W 1)$ and $\mathrm{O}(3)$ as at least one of these contacts is essential for cohesion between the layers. The $\mathrm{O}(2)-\mathrm{O}(W 1)-\mathrm{O}(3)$ angle of 92° is small but Baur (1964) has pointed out that there appears to be no correlation between the magnitudes of the angles $\mathrm{H}-\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}(W)-\mathrm{O}$. Nevertheless the possibility that one of the hydrogen atoms makes a long contact to $\mathrm{O}(6)$ instead of $\mathrm{O}(3)$ cannot be discounted. Bonding between $\mathrm{O}(W 1)$ and $\mathrm{O}(5)$ or $\mathrm{O}(7)$ seems unlikely as an $\mathrm{O}(W)-\mathrm{O}$ distance of $2.51 \AA$ is rather shorter than is generally found for hydrogen bonding in hydrates
(Singer \& Cromer, 1959). A Fourier difference synthesis failed to reveal the positions of the hydrogen atoms but a study of the lengths of the bonds by spectroscopic methods is in progress.

The authors are grateful to Mr C. Anderson for taking the precession data.

References

Baur, W. H. (1964). Acta Cryst. 17, 863.
Bear, I. J. \& Mumme, W. G. (1968). Chem. Comm. p. 609. Bear, I. J. \& Mumme, W. G. (1969a). Acta Cryst. B25, 1558. Bear, I. J. \& Mumme, W. G. (1969b). Acta Cryst. B25, 1566. Bear, I. J. \& Mumme, W. G. (1969c). Acta Cryst. B25, 1572.

Bear, I. J. \& Mumme, W. G. (1969d). Chem. Comm. p. 230
Bear, I. J. \& Mumme, W. G. (1970). Acta Cryst. B26, 1131.

Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. \& Truter, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Oxford: Pergamon Press.

Herak, R. M., Malcic, S. S. \& Manojlovic, L. M. (1965). Acta Cryst. 18, 520.
McCullough, J. D., Brewer, L. \& Bromley, L. A. (1948). Acta Cryst. 1, 287.
McCullough, J. D. \& Trueblood, K. N. (1959). Acta Cryst. 12, 507.
Mumme, W. G. \& Wadsley, A. D. (1968). Acta Cryst. B24, 1327.

Singer \& Cromer, D. T. (1959). Acta Cryst. 12, 719.

Acta Cryst. (1970). B26, 1131

The Crystal Chemistry of Zirconium Sulphates. V. The Structure of $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{\mathbf{2}} . \mathrm{H}_{\mathbf{2}} \mathrm{O}$

By I.J. Bear and W. G. Mumme
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 5 May 1969)

Abstract

$\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the stable modification of the three monohydrates of zirconium sulphate that are formed by thermal decomposition of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$, is monoclinic with space group $P 2_{1} / C$, and unitcell dimensions $a=7.32, b=8 \cdot 54, c=11 \cdot 8 \AA, \beta=106 \cdot 0^{\circ}$. It crystallizes in two differing morphologies. The structure, as determined by single-crystal X-ray analysis, consists of layers of composition $\left[\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{n}$ aligned in sheets parallel to the (100) plane. These layers appear to be held together by hydrogen bonds. Within the layers zirconium is bonded by six oxygen atoms to bridging sulphate tetrahedra, and to one additional oxygen atom belonging to the water molecule. The resulting sevenfold coordination for zirconium is similar to that previously found in the γ-monohydrate and in ZrO_{2} (monoclinic form). Powder data for a third monohydrate $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ are also presented, and it is deduced from this and infrared data that the β-form is, most probably, closely related to the structure of the γ-form.

Introduction

Parts I-III of this series of papers (Bear \& Mumme, 1969a, b, c) have described the structural and chemical relationships between the four higher hydrates $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}, \alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}, \beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$. Part IV (Bear \& Mumme, 1970a) described the structure of $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$, one of the three forms of zirconium sulphate monohydrate obtained by thermal decomposition of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Bear \& Mumme, 1969d). γ and $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ are metastable, and equilibrate to the stable α form when heated in a sealed tube at temperatures between 150 and $210^{\circ} \mathrm{C}$ or in an atmosphere provided by $75 \%(\mathrm{w} / \mathrm{w})$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $150-160^{\circ} \mathrm{C}$. In keeping with the equilibrium nature of the phase, $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ can also be obtained by vapour hydration of the anhydrous zirconium sulphates at $120^{\circ} \mathrm{C}$ in atmospheres provided by $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.

This paper describes the structure of $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and also presents powder data and unit-cell parameters
for $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$. Part VII (Bear \& Mumme, 1970b) discusses the structural relationships between the hydrates of $\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$. Skeletal structural correspondences between them are used to postulate mechanisms of transformation.

Experimental

Microcrystalline $\beta-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ was prepared by aging $\gamma-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Bear \& Mumme, 1969d) at room temperature while $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ was obtained by equilibration of the γ-phase over $75 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at $155^{\circ} \mathrm{C}$. Powder X-ray diffraction data for β and $\alpha-\mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Tables 1 and 2 respectively) were collected from these microcrystalline samples with a Philips proportional counter diffractometer using a Ni filter and $\mathrm{Cu} K \alpha$ radiation. As both compounds are deliquescent under ambient conditions a special sample holder was fitted to the diffractometer which permitted dry N_{2} gas to be passed over the specimens. The powder data for the two compounds were indexed by

